首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1644篇
  免费   182篇
  国内免费   485篇
安全科学   30篇
废物处理   16篇
环保管理   183篇
综合类   751篇
基础理论   1022篇
污染及防治   128篇
评价与监测   61篇
社会与环境   116篇
灾害及防治   4篇
  2024年   3篇
  2023年   40篇
  2022年   66篇
  2021年   68篇
  2020年   88篇
  2019年   69篇
  2018年   60篇
  2017年   82篇
  2016年   83篇
  2015年   98篇
  2014年   91篇
  2013年   130篇
  2012年   123篇
  2011年   160篇
  2010年   116篇
  2009年   119篇
  2008年   121篇
  2007年   148篇
  2006年   100篇
  2005年   110篇
  2004年   77篇
  2003年   61篇
  2002年   43篇
  2001年   31篇
  2000年   36篇
  1999年   25篇
  1998年   23篇
  1997年   19篇
  1996年   25篇
  1995年   16篇
  1994年   14篇
  1993年   13篇
  1992年   12篇
  1991年   10篇
  1990年   6篇
  1989年   5篇
  1988年   3篇
  1987年   4篇
  1986年   4篇
  1984年   4篇
  1982年   2篇
  1981年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有2311条查询结果,搜索用时 15 毫秒
51.
Ornamental horticulture has been identified as an important threat to plant biodiversity and is a major pathway for plant invasions worldwide. In this context, the family Cactaceae is particularly challenging because it is considered the fifth most threatened large taxonomic group in the world; several species are among the most widespread and damaging invasive species; and Cactaceae is one of the most popular horticultural plant groups. Based on the Convention on International Trade in Endangered Species of Wild Flora and Fauna and the 11 largest online auction sites selling cacti, we documented the international cactus trade. To provide an in‐depth look at the dynamics of the industry, we surveyed the businesses involved in the cactus trade in South Africa (a hotspot of cactus trade and invasions). We purchased seeds of every available species and used DNA barcoding to identify species to the genus level. Although <20% of this trade involved threatened species and <3% involved known invasive species, many species were identified by a common name. However, only 0.02% of the globally traded cacti were collected from wild populations. Despite a large commercial network, all South African imports (of which 15% and 1.5% were of species listed as threatened and invasive, respectively) came from the same source. With DNA barcoding, we identified 24% of the species to genus level. Based on our results, we believe that if trade restrictions are placed on the small proportion of cacti that are invasive and there is no major increase in harvesting of native populations, then the commercial trade in cactus poses a negligible environmental threat. However, there are currently no effective methods for easily identifying which cacti are traded, and both the illicit harvesting of cacti from the wild and the informal trade in invasive taxa pose on‐going conservation challenges.  相似文献   
52.
Designing connected landscapes is among the most widespread strategies for achieving biodiversity conservation targets. The challenge lies in simultaneously satisfying the connectivity needs of multiple species at multiple spatial scales under uncertain climate and land‐use change. To evaluate the contribution of remnant habitat fragments to the connectivity of regional habitat networks, we developed a method to integrate uncertainty in climate and land‐use change projections with the latest developments in network‐connectivity research and spatial, multipurpose conservation prioritization. We used land‐use change simulations to explore robustness of species’ habitat networks to alternative development scenarios. We applied our method to 14 vertebrate focal species of periurban Montreal, Canada. Accounting for connectivity in spatial prioritization strongly modified conservation priorities and the modified priorities were robust to uncertain climate change. Setting conservation priorities based on habitat quality and connectivity maintained a large proportion of the region's connectivity, despite anticipated habitat loss due to climate and land‐use change. The application of connectivity criteria alongside habitat‐quality criteria for protected‐area design was efficient with respect to the amount of area that needs protection and did not necessarily amplify trade‐offs among conservation criteria. Our approach and results are being applied in and around Montreal and are well suited to the design of ecological networks and green infrastructure for the conservation of biodiversity and ecosystem services in other regions, in particular regions around large cities, where connectivity is critically low.  相似文献   
53.
Ganges River dolphin, Platanista gangetica gangetica, is one of the three obligatory freshwater dolphins in the world and is distributed in the Ganges–Brahmaputra–Meghna and Sangu–Karnaphuli River systems in India, Nepal, and Bangladesh. This species is facing considerable threats to its survival, and its population has dwindled from 4000 to 5000 in the early 1980s to 3500 in 2014 in the distribution range. This article reviews current status of the sub-species, habitat use, and the potential threats that the dolphins face for their survival (details of taxonomic status and genetics, evolutionary adaptations and anatomical peculiarities, physical adaptation, primitive characteristics, biology, behavior, surfacing behavior and dive times, mating and birth, and life span/age have been placed as Electronic Supplementary Materials). Recommendations have been made for the protection and developing strategies for the conservation of this Endangered and endemic sub-species.

Electronic supplementary material

The online version of this article (doi:10.1007/s13280-014-0534-7) contains supplementary material, which is available to authorized users.  相似文献   
54.
Small body size is generally correlated with r‐selected life‐history traits, including early maturation, short‐generation times, and rapid growth rates, that result in high population turnover and a reduced risk of extinction. Unlike other classes of vertebrates, however, small freshwater fishes appear to have an equal or greater risk of extinction than large fishes. We explored whether particular traits explain the International Union for Conservation of Nature (IUCN) Red List conservation status of small‐bodied freshwater fishes from 4 temperate river basins: Murray‐Darling, Australia; Danube, Europe; Mississippi‐Missouri, North America; and the Rio Grande, North America. Twenty‐three ecological and life‐history traits were collated for all 171 freshwater fishes of ≤120 mm total length. We used generalized linear mixed‐effects models to assess which combination of the 23 traits best explained whether a species was threatened or not threatened. We used the best models to predict the probability of 29 unclassified species being listed as threatened. With and without controlling for phylogeny at the family level, small body size—among small‐bodied species—was the most influential trait correlated with threatened species listings. The k‐folds cross‐validation demonstrated that body size and a random effect structure that included family predicted the threat status with an accuracy of 78% (SE 0.5). We identified 10 species likely to be threatened that are not listed as such on the IUCN Red List. Small body size is not a trait that provides universal resistance to extinction, particularly for vertebrates inhabiting environments affected by extreme habitat loss and fragmentation. We hypothesize that this is because small‐bodied species have smaller home ranges, lower dispersal capabilities, and heightened ecological specialization relative to larger vertebrates. Trait data and further model development are needed to predict the IUCN conservation status of the over 11,000 unclassified freshwater fishes, especially those under threat from proposed dam construction in the world's most biodiverse river basins.  相似文献   
55.
One of the criteria used by the International Union for Conservation of Nature (IUCN) to assess threat status is the rate of decline in abundance over 3 generations or 10 years, whichever is longer. The traditional method for calculating generation length (T) uses age‐specific survival and fecundity, but these data are rarely available. Consequently, proxies that require less information are often used, which introduces potential biases. The IUCN recommends 2 proxies based on adult mortality rate, = α + 1/d, and reproductive life span, = α + z*RL, where α is age at first reproduction, d is adult mortality rate, RL is reproductive life span, and z is a coefficient derived from data for comparable species. We used published life tables for 78 animal and plant populations to evaluate precision and bias of these proxies by comparing and with true generation length. Mean error rates in estimating T were 31% for and 20% for , but error rates for were 16% when we subtracted 1 year ( ), as suggested by theory; also provided largely unbiased estimates regardless of the true generation length. Performance of depends on compilation of detailed data for comparable species, but our results suggest taxonomy is not a reliable indicator of comparability. All 3 proxies depend heavily on a reliable estimate of age at first reproduction, as we illustrated with 2 test species. The relatively large mean errors for all proxies emphasized the importance of collecting the detailed life‐history information necessary to calculate true generation length. Unfortunately, publication of such data is less common than it was decades ago. We identified generic patterns of age‐specific change in vital rates that can be used to predict expected patterns of bias from applying .  相似文献   
56.
Environmental heterogeneity is increasingly being used to select conservation areas that will provide for future biodiversity under a variety of climate scenarios. This approach, termed conserving nature's stage (CNS), assumes environmental features respond to climate change more slowly than biological communities, but will CNS be effective if the stage were to change as rapidly as the climate? We tested the effectiveness of using CNS to select sites in salt marshes for conservation in coastal Georgia (U.S.A.), where environmental features will change rapidly as sea level rises. We calculated species diversity based on distributions of 7 bird species with a variety of niches in Georgia salt marshes. Environmental heterogeneity was assessed across six landscape gradients (e.g., elevation, salinity, and patch area). We used 2 approaches to select sites with high environmental heterogeneity: site complementarity (environmental diversity [ED]) and local environmental heterogeneity (environmental richness [ER]). Sites selected based on ER predicted present‐day species diversity better than randomly selected sites (up to an 8.1% improvement), were resilient to areal loss from SLR (1.0% average areal loss by 2050 compared with 0.9% loss of randomly selected sites), and provided habitat to a threatened species (0.63 average occupancy compared with 0.6 average occupancy of randomly selected sites). Sites selected based on ED predicted species diversity no better or worse than random and were not resilient to SLR (2.9% average areal loss by 2050). Despite the discrepancy between the 2 approaches, CNS is a viable strategy for conservation site selection in salt marshes because the ER approach was successful. It has potential for application in other coastal areas where SLR will affect environmental features, but its performance may depend on the magnitude of geological changes caused by SLR. Our results indicate that conservation planners that had heretofore excluded low‐lying coasts from CNS planning could include coastal ecosystems in regional conservation strategies.  相似文献   
57.
采用物种敏感度排序法(SSR)对我国铅的淡水水生生物安全基准进行推导,并以太湖为例进行了流域水生生物安全基准推导。对于难以获得的本土生物毒性数据,开展了相应的毒性试验。获得了我国国家与太湖流域铅的水生生物安全基准值,基准最大浓度(CMC)分别为63.92、104.26μg·L-1,基准连续浓度(CCC)分别为1.21、4.06μg·L-1。同时,对我国主要河流以及太湖流域进行了铅的生态风险评价,联合概率曲线法显示影响5%水生生物种类的概率分别为66.22%和43.19%,熵值法则显示中国主要河流存在较大的铅暴露风险,因此,我国铅的潜在生态风险较大,主要河流与太湖流域存在铅污染问题。  相似文献   
58.
Conserving or restoring landscape connectivity between patches of breeding habitat is a common strategy to protect threatened species from habitat fragmentation. By managing connectivity for some species, usually charismatic vertebrates, it is often assumed that these species will serve as conservation umbrellas for other species. We tested this assumption by developing a quantitative method to measure overlap in dispersal habitat of 3 threatened species—a bird (the umbrella), a butterfly, and a frog—inhabiting the same fragmented landscape. Dispersal habitat was determined with Circuitscape, which was parameterized with movement data collected for each species. Despite differences in natural history and breeding habitat, we found substantial overlap in the spatial distributions of areas important for dispersal of this suite of taxa. However, the intuitive umbrella species (the bird) did not have the highest overlap with other species in terms of the areas that supported connectivity. Nevertheless, we contend that when there are no irreconcilable differences between the dispersal habitats of species that cohabitate on the landscape, managing for umbrella species can help conserve or restore connectivity simultaneously for multiple threatened species with different habitat requirements. Definición y Evaluación del Concepto de Especie Paraguas para Conservar y Restaurar la Conectividad de Paisajes  相似文献   
59.
Despite many studies showing that landscape corridors increase dispersal and species richness for disparate taxa, concerns persist that corridors can have unintended negative effects. In particular, some of the same mechanisms that underlie positive effects of corridors on species of conservation interest may also increase the spread and impact of antagonistic species (e.g., predators and pathogens), foster negative effects of edges, increase invasion by exotic species, increase the spread of unwanted disturbances such as fire, or increase population synchrony and thus reduce persistence. We conducted a literature review and meta‐analysis to evaluate the prevalence of each of these negative effects. We found no evidence that corridors increase unwanted disturbance or non‐native species invasion; however, these have not been well‐studied concerns (1 and 6 studies, respectively). Other effects of corridors were more often studied and yielded inconsistent results; mean effect sizes were indistinguishable from zero. The effect of edges on abundances of target species was as likely to be positive as negative. Corridors were as likely to have no effect on antagonists or population synchrony as they were to increase those negative effects. We found 3 deficiencies in the literature. First, despite studies on how corridors affect predators, there are few studies of related consequences for prey population size and persistence. Second, properly designed studies of negative corridor effects are needed in natural corridors at scales larger than those achievable in experimental systems. Third, studies are needed to test more targeted hypotheses about when corridor‐mediated effects on invasive species or disturbance may be negative for species of management concern. Overall, we found no overarching support for concerns that construction and maintenance of habitat corridors may result in unintended negative consequences. Negative edge effects may be mitigated by widening corridors or softening edges between corridors and the matrix. Other negative effects are relatively small and manageable compared with the large positive effects of facilitating dispersal and increasing diversity of native species. Efectos Negativos Potenciales de los Corredores  相似文献   
60.
Managing invasive species is a major challenge for society. In the case of newly established invaders, rapid action is key for a successful management. Here, we develop, describe and recommend a three-step transdisciplinary process (the “butterfly model”) to rapidly initiate action for invasion management. In the framing of a case study, we present results from the first of these steps: assessing priorities and contributions of both scientists and decision makers. Both scientists and decision makers prioritise research on prevention. The available scientific knowledge contributions, however, are publications on impacts rather than prevention of the invasive species. The contribution of scientific knowledge does thus not reflect scientists’ perception of what is essentially needed. We argue that a more objective assessment and transparent communication of not only decision makers’ but also scientists’ priorities is an essential basis for a successful cooperation. Our three-step model can help achieve objectivity via transdisciplinary communication.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号